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The ecology of visual perception ';‘
Affordances (.J. Gibson 1986) ,
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whereas an organ is actiated.
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+ Affordances are relations
between perception and action.
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eSky \ + According to Gibson concepts like planes and spaces are
. geometrical terms. They are only describing numbers.
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\ stumble over the stone. This is the difference betwen

invariant and variant perception of affordances.
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The conception of the
ambient optic array as
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— Perception and action are not separate

processes Direct theories of perception state that

- Perception cannot be separated from the §;Cf;”§a“v’;‘a“§e”f§§'t"h'§ S:L‘g::t:iefi::
environment world (meaning). This is because either:

— Our perceptive system evolved in the —t
environment, i.e. based on the information
that is present in that environment

— Perception, action and the environment are
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Figure 3-3. The electrical circuit equivalent of the synaptic arrangement shown -
- Figire 3-2 i the configuraion suggesied by Tore and Foggio (1978) for
implemersing dircional seeciiy: The ierscion implemented by th cicu
has the form g, ~ o g, &, which approximates a logical AND-NOT gate. A logical
AND gaie can be implemented by a similar circuit.
Everyday experience,
coarse psychophysical demonstrations
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Figure 1—4. The three levels at which any machine carrying out an information- (b mrasnh)

processing task must be understood.
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Figure 2-8.  The notion of a zero-crossing. The intensity change (a) gives rise to
a peak (b) in its first derivative and to a (steep) zero-crossing Z (c) in its second
derivative.
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Figure 6-1. Relationships between representations and processes.
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Figure 3-55. Gibson’s example of flow induced by motion. The arrows represent
angular velocities, which are zero directly ahead and behind. (Reprinted from J. J.
Gibson, The Senses Considered as Perceptual Systems, Houghton Mifflin, Boston,
1966, fig. 9.3.)

Figures 2-12, 13, 14. These three figures show examples of zero-crossing detec-
tion using V°G. In each figure, (a) shows the image (320 X 320 pixels); (b) shows
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the image’s convolution with VG, with w,_, = 8 (zero is represented by gray);
— ) (c) shows the positive values in white and the negative in black; (d) shows only the

— ZEro-crossings.

Figure 5-3. This diagram illustrates the organization of shape information in a 3-D
model description. Each box corresponds to a 3-D model, with its model axis on the left side of
thick horse human ostrich the box and the arrangement of its component axes on the right. In addition, some component
limb axes have 3-D models associated with them, as indicated by the way the boxes overlap. The relative
arrangement of each model’s component axes, however, is shown improperly, since it should be
in an object-centered system rather than the viewer-centered projection used here (a more correct
3-D model is given by the table shown in Figure 5-5¢). The important characteristics of this type
of organization are: (1) Each 3-D model is a self-contained unit of shape information and has a
limited complexity; (2) information appears in shape contexts appropriate for recognition (the

Figure 2-30. A Mondrian stimulus of the sort introduced by Land and McCann
and used by Ullman in his study of fluorescence.

Figure 2-23.  We cannot sense the primitive zero-crossings, only the description to which they
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disposition of a finger is most stable when specified relative to the hand that contains it); and (3)
the representation can be manipulated flexibly. This approach limits the representation’s scope,
however, since it is only useful for shapes that have well-defined 3-D model decompositions.
(Reprinted by permission from D. Marr and H. K. Nishihara, “Representation and recognition of
the spatial organization of three-dimensional shapes," Proc. R. Soc. Lond. B 200, 269-294.)

give rise in the raw primal sketch. This can be seen in L. D. Harmon’s discretely sampled and
quantized image of Abraham Lincoln () No amount of voluntary effort allows us to see Lincoln
without defocusing the image or squinting the eyes, despite the fact that the zero-crossings in the
larger channels are producing an approximate representation of Lincoln’s face. (b), (c), (d) The
zero-crossings from the three sizes of the VG operator used in Figure 2-20.



